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Abstract In this paper, we consider the chemostat model with inhibitory exponen-
tial substrate, variable yield and a time delay. A detailed qualitative analysis about
existence and boundedness of its solutions and the local asymptotic stability of its
equilibria are carried out. The Hopf bifurcation of solutions to the system is studied.
Using Lyapunov–LaSalle invariance principle, we show that the washout equilibrium
is global asymptotic stability for any time delay. Based on some known techniques
on limit sets of differential dynamical systems, we show that, for any time delay, the
chemostat model is permanent if and only if only one positive equilibrium exits.

Keywords Chemostat · Time delay · Stability · Lyapunov–LaSalle invariance
principle · Hopf bifurcation · Permanence

1 Introduction and statement of improved model

The chemostat is an important laboratory apparatus used to culture microorganisms
[1–3]. It is assumed that species grow in continuously stirred-tank fermenters which
are fed continuously by a nutrient and the cells are drawn off continuously. Therefore,
the chemostat is of both ecological and mathematical interest since its applicability
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in many areas, for example, waste water treatment and the operation of industrial
fermenters etc [2,3].

It is well known that the basic chemostat model with single microorganism and
nutrient takes the following form [2,3]

{
Ṡ(t) = D(S0 − S) − δ−1μ(S)X ,

Ẋ(t) = (μ(S) − D)X,
(1.1)

where S(t) and X (t) denote concentrations of the nutrient and the microorganism
at time t respectively, S0 denotes the input concentration of nutrient, D denotes the
volumetric dilution rate (flow rate/volume), δ is yield term, the function μ(S) denotes
the microbial growth rate and a typical choice for μ(S) is Monod kinetics function
(Michaelis-Menten or Holling type II), which takes the form of μ(S) = μm S/(km+S),
and satisfies the following conditions: μ(0) = 0, μ′(S) > 0, limS→+∞ μ(S) = μm <

+∞. Here μm > 0 is called the maximal specific growth rate; km > 0 is the half-
saturation constant, such that μ(km) = μm/2. Clearly, μ(S) is an increasing function
of S over the entire interval [0,+∞).

So far, the chemostat models with Monod kinetics for nutrient uptake and its var-
ious modified versions have been studied sufficiently, because they could be used
to account for various important phenomena that are relevant to the actual experi-
ments in applications [3]. In most modified chemostat models, it is assumed that the
nutrient uptake function μ(S) is increasing for any S ≥ 0. On the other hand, in
biology, there may be cases that very high substrate concentrations actually inhibit
the growth of microorganisms, and that while the substrate concentrations increasing
unlimitedly, some kind of microorganism will die eventually. Based on the above bio-
logical phenomenon, [4] introduced the so-called T issiet functional response, i.e.,
μ(S) = μmSe−S/ki /(km + S) [2,5–7], to the basic chemostat model (1.1), and got the
following modified model:

⎧⎨
⎩

Ẋ(t) = μm S(t)
km+S(t)e

− S(t)
ki X (t) − DX (t),

Ṡ(t) = (S0 − S(t))D − μm S(t)
km+S(t)e

− S(t)
ki X (t),

(1.2)

where, μm , km and ki are positive constants. T issiet functional response has the
properties that μ(S) is increasing on [0, S∗] for some S∗ > 0 and decreasing on
[S∗,+∞) (of cause, the concentration of the nutrient can not attend to infinity in
biology and the component S(t) of any solution (X (t), S(t)) of (1.2) can not be
unbounded in mathematics.). A detailed theoretical analysis on asymptotic properties
of the equilibria of (1.1) is also carried out in [4].

Most of the models in chemostat assume that yield coefficient is a constant. But
the experimental data indicate that a constant yield may fail to explain the observed
oscillatory behavior in the vessel. And the fact that the yield coefficient may depend
on the substrate concentration is now well established in experimental literature [8,9].
It is a function of nutrient density S, i.e. δ(S). The greater the nutrient density is, the
lower the consuming rate. So the function δ(S) is a nondecreasing function of S and
called the variable yield, which takes the form:
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(1) δ(S) = A + BSn, n = 1, 2, . . . [9–20] and the references there in,
(2) δ(S) = (A + BS)γ [21],
(3) δ(S) = A0 + A1S + · · · + An Sn [22,23],
(4) the case of general yield functions, δ(0) = 0 and δ′(S) ≥ 0 [24–26].

These studies demonstrated that if the yield coefficient increases with substrate
concentration, then in a suitable parameter range, the Hopf bifurcation, limit cycles
or more complex dynamics may appear, which was useful to explain the phenomena
of oscillations.

Furthermore, as pointed out in [3] that time delays occur naturally in chemostat.
In recent years, chemostat models with time delays have been given much attention
[27–34] and the references there in. It is shown that, for some models, time delays could
destroy stability of the steady state of the models and result in periodical oscillation
etc, and that for other models, time delays may be harmless for stability of the steady
state and persistence of the models. So it is necessary to consider the time delays in a
chemostat model.

As far as we know, there are almost no literatures to discuss the chemostat model
with T issiet functional response, linear variable yield and time delay. In the paper, we
shall further consider the chemostat model (1.2) with variable yield and a time delay,
i.e., the chemostat model governed by the following nonlinear differential systems
with time delay:

⎧⎨
⎩

Ẋ(t) = μm S(t−τ)
km+S(t−τ)

e
− S(t−τ )

ki X (t − τ) − DX (t),

Ṡ(t) = (S0 − S(t))D − μm S(t)
km+S(t)e

− S(t)
ki X (t)

A+BS(t) ,
(1.3)

where τ ≥ 0 is time delay, and all other parameters in (1.3) are the same as that in
(1.2). If τ = 0, it will be the model of [5].

As usual, in order to get dimensionless system, let us define

X = S0x, S = S0 y, t = T/D, m = μm/D, b = S0/ki , a = km/S0, C = BS0

and still denote T with t , then the system (1.3) becomes

{
ẋ(t) = my(t−τ)

a+y(t−τ)
e−by(t−τ)x(t − τ) − x(t),

ẏ(t) = 1 − y(t) − my(t)
a+y(t)

x(t)
A+Cy(t)e−by(t).

(1.4)

By biological meaning, the initial conditions of (1.4) are given as

x(t) = ϕ1(t) ≥ 0, y(t) = ϕ2(t) ≥ 0, t ∈ [−τ, 0], (1.5)

where ϕ1(t) and ϕ2(t) are all continuous functions on [−τ, 0]. By a biological meaning,
we further assume that ϕi (0) > 0 for i = 1, 2.

This paper is organized as follows. In the following section, we shall consider the
existence and boundedness of solutions of (1.4) with the initial condition (1.4). Then,
based on simple analysis on the characteristic equations of (1.4) about the equilibria,
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the local asymptotic stability of the equilibria shall be considered in Sect. 3. In Sect. 4,
the global asymptotic stability of the washout equilibrium of (1.4) shall be discussed
by Lyapunov–LaSalle invariance principle. In sect. 5, the permanence of (1.4) shall be
discussed by some analytic techniques on limit sets of differential dynamical systems.
Finally, some discussions are given in Sect. 6.

2 Existence and boundedness of solutions

In this section, we shall consider the existence and boundedness of solutions of (1.4)
with the initial condition (1.5). It has the following

Theorem 2.1 The solution (x(t), y(t)) of system (1.4) with the initial condition (1.5)
exists and is positive on [0,+∞). Further,

lim sup
t→+∞

y(t) ≤ 1, lim sup
t→+∞

x(t) ≤ q, lim inf
t→+∞ y(t) ≥ ν

where q = max{A + Cy} (y ∈ [0, 2]), ν = a A
a A+Mq .

Proof First, from theory of local existence of solutions of general functional differen-
tial equations (see, for example, [35]), it has that x(t) and y(t) are existent on [0, b)

for some positive constant b. Let us first show that y(t) > 0 for t ∈ [0, b). In fact, if
not so, by ϕ2(t) ≥ 0 and the continuity of y(t), there must be t1 ≥ 0 such that

y(t1) = 0, ẏ(t1) ≤ 0, and y(t) ≥ 0(−τ ≤ t ≤ t1),

where ẏ(t1) denotes the right-hand derivative at t = t1, if t1 = 0. Hence, by the second
equation of system (1.4), it has that

ẏ(t1) = 1 − y(t1) − mx(t1)y(t1)

(a + y(t1))(A + Cy(t1))
e−by(t1) = 1 > 0.

This is a contradiction to ẏ(t1) ≤ 0. This shows that y(t) > 0 for any t ∈ [0, b).

We further show that x(t) > 0 for any t ∈ [0, b). In fact, assume that there exists
some t2 > 0 such that

x(t2) = 0, x(t) > 0(−τ ≤ t ≤ t2)

Integrating the first equation of (1.4) from 0 to t2, we see that

x(t2) = x(0)e−t2 +
t2∫

0

mx(u − τ)y(u − τ)e−by(u−τ)

a + y(u − τ)
e−(t2−u)du > 0,

which contradicts x(t2) = 0. Therefore, it has that x(t) > 0 for any t ∈ [0, b).
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Next, let us prove that x(t) and y(t) are bounded on [0, b). In fact, from (1.4) and
the positivity of x(t) and y(t) on [−τ, b), it has that for any t ∈ [0, b),

{
ẋ(t) ≤ mx(t − τ) − x(t),
ẏ(t) ≤ 1 − y(t).

(2.1)

Since any solution of the linear system with time delay

{
u̇(t) = mu(t − τ) − u(t),
v̇(t) = 1 − v(t)

(2.2)

is existent on [0,+∞), it has from well known comparison principle for delayed
differential equations (see, for example, [36]) that for any t ∈ [0, b),

x(t) ≤ u(t), y(t) ≤ v(t), (2.3)

where (u(t), v(t)) is unique solution of (2.2) with the initial condition u(t) = ϕ1(t) ≥
0 and v(t) = ϕ2(t) ≥ 0 for t ∈ [−τ, 0]. It is clear from (2.3) that the solution
(x(t), y(t)) must be bounded on finite interval [0, b). Therefore, it follows from the-
ory of continuation of solutions for functional differential equations (see, for example,
[35]) that the solution (x(t), y(t)) is existent and non-negative on [0,+∞). Further-
more, notice the second inequality of (2.1), it easily has that lim supt→+∞ y(t) ≤ 1.

In particular, there is a T > 0, such that y(t) ≤ 2 for all t ≥ T . Let q = max{A +Cy}
(y ∈ [0, 2]), V (t) = x(t+τ)

q + y(t), then

V ′(t) ≤ 1 − y(t) − x(t + τ)

q
= 1 − V (t), t ≥ T .

Therefore

lim sup
t→+∞

x(t) ≤ lim sup
t→+∞

qV (t) ≤ q.

It is easily to see that for the system (1.4)

y′(t) ≥ 1 − y(t) − mq

a A
y(t) = 1 − mq + a A

a A
y(t)

which implies that lim inf t→+∞ y(t) ≥ a A
a A+mq = ν. This completes the proof of

Theorem 2.1.

3 Local asymptotic stability analysis

In this section, we shall consider the local asymptotic stability of the equilibria of
system (1.4). Notice the proof of Theorem 4.1 in Sect. 4, it has that the subset

G = {φ = (ϕ1, ϕ2) ∈ C | ϕ1 ≥ 0, ν ≤ ϕ2 ≤ 1}.
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is positively invariant with respect to (1.4). Hence, it is enough to consider system
(1.4) on G.

For the existence of the equilibria, it already has the following

Lemma 3.1 [4] (1.4) always has a washout equilibrium E0 = (0, 1). For the existence
of the positive equilibria, there are four cases:

(1) If 0 < m ≤ 1 or m > 1, b < 2, me−b(1 − b) ≥ 1, me−b ≤ a + 1 or
m > 1, me−b(1 − b) < 1, me−b < a + 1, bȳ2 + abȳ − a < 0, then there
does not exist any positive equilibrium, where ȳ denotes the real root of f ′(y) =
me−by(1 − by) − 1 = 0 on [0, 1].

(2) If m > 1, me−b > a+1 or m > 1, me−b(1−b) < 1, me−b = a+1, then there
exists a single positive equilibrium, denoted by E+

1 = (A+(C− A)y∗
1 −Cy∗2

1 , y∗
1 ),

where y∗
1 is unique real root of f (y) = mye−by − a − y = 0 on [0, 1].

(3) If m > 1, me−b < a +1, me−b(1−b) < 1, bȳ2 +abȳ −a = 0, then there exists
a single positive equilibrium, denoted by E+

3 = (A + (C − A)y∗
3 − Cy∗2

3 , y∗
3 ),

where y∗
3 is unique real root of f (y) = mye−by − a − y = 0 on [0, 1].

(4) If m > 1, me−b < a+1, me−b(1−b) < 1, bȳ2+abȳ−a > 0, then there exist two
positive equilibria, denoted respectively, by E+

21 = (A + (C − A)y∗
21 −Cy∗2

21 , y∗
21)

and E+
22 = (A + (C − A)y∗

22 − Cy∗2
22 , y∗

22), where y∗
21 and y∗

22 are only two real
roots of f (y) = mye−by − a − y = 0 on [0, 1].

Theorem 3.1 If the case (1) of Lemma 3.1 holds, then, for any time delay τ ≥ 0, E0 is
locally asymptotically stable for me−b < a + 1; E0 is unstable for me−b > a + 1; the
trivial solution of the linearized system of (1.4) about E0 is stable for me−b = a + 1.

Proof The system (1.4) is centered on E+
i = (x∗

i , y∗
i ) (i = 0, 1, 21, 22, 3) by intro-

ducing

{
X = x − x∗

i ,

Y = y − y∗
i ,

and corresponding linearized system is of the form

{
Ẋ(t) = −X (t) + M X (t − τ) + NY (t − τ),

Ẏ (t) = P X (t) + QY (t),
(3.1)

where

M = my∗
i

a + y∗
i

e−by∗
i , N = mx∗

i

(−by∗2
i − aby∗

i + a
)

(
a + y∗

i

)2 e−by∗
i ,

P = − my∗
i e−by∗

i(
a + y∗

i

)
(A + Cy∗

i )
,

Q = −mx∗
i

[
a A − abAy∗

i − (abC + bA + C)y∗2
i − bCy∗3

i

]
(
a + y∗

i

)2 (
A + Cy∗

i

)2 e−by∗
i − 1.
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The associated characteristic equation of (3.1) is given by

λ2 + (1 − Q)λ − Mλe−λτ − Q + (M Q − N P)e−λτ = 0. (3.2)

We first consider local stability of E0 = (0, 1).
Now, M = me−b/(a + 1), N = 0, P = −me−b/[(a + 1)(A + C)], Q = −1.

Hence, (3.2) becomes

(λ + 1)

(
λ + 1 − me−b

a + 1
e−λτ

)
= 0. (3.3)

It is obviously that (3.3) has a negative characteristic root λ = −1. Next, we consider
the roots of the transcendental equation

λ + 1 − me−b

a+1 e−λτ = 0. (3.4)

It follows from [35] that

(i) If me−b < a + 1, then all roots of (3.4) have negative real parts for any time delay
τ ≥ 0. Hence, E0 is locally asymptotically stable for any time delay τ ≥ 0.

(ii) If me−b > a + 1, then (3.4) has roots which have positive real roots for any time
delay τ ≥ 0. Hence, E0 is unstable for any time delay τ ≥ 0.

(iii) If me−b = a + 1, this is a critical case and (3.4) is equivalent to

λ + 1 − e−λτ = 0. (3.5)

From [35], it has that except λ = 0, any root of (3.5) has negative real part for any
time delay τ ≥ 0. Hence, the trivial solution of the linearized system of (1.4) about
E0 is stable for any time delay τ ≥ 0.

Theorem 3.2 (1) If 1
2 N P < Q < 0, then E+

1 is locally asymptotically stable for
τ < τ0, E+

1 is unstable for τ > τ0, there is a periodic solution around E+
1 for τ = τ0;

If Q > 0 or Q ≤ 1
2 N P, E+

1 is unstable for any τ ≥ 0. (2) If 1
2 N P < Q < 0, then

E+
21 is locally asymptotically stable for τ < τ̄0, E+

21 is unstable for τ > τ̄0, there is a
periodic solution around E+

21 for τ = τ̄0; If Q > 0 or Q ≤ 1
2 N P, E+

21 is unstable for
any τ ≥ 0. (3) E+

22 is unstable for any τ ≥ 0. (4) If Q > 0, then the trivial solution
of the linearized system of (1.4) about E+

3 is unstable for any τ ≥ 0; If Q < 0, then
the trivial solution of the linearized system of (1.4) about E+

3 is stable for any τ ≥ 0.

Proof We consider the local stability of

E+
i = (

x∗
i , y∗

i

) =
(

A + (C − A)y∗
i − Cy∗2

i , y∗
i

)
, (i = 1, 21, 22, 3).
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Consider the transcendental equation (3.2). Now,

M = 1, N =
(
1 − y∗

i

) (
A + Cy∗

i

) (
−by∗2

i − aby∗
i + a

)
(
a + y∗

i

)
y∗

i
, P = − 1

A + Cy∗
i

,

Q = − a A − abAy∗
i + (A + abA − bA + aC − C − abC)y∗2

i + (bA + 2C + abC − bC)y∗3
i + bCy∗4

i(
a + y∗

i

)
y∗

i

(
A + Cy∗

i

) .

when τ = 0, (3.2) becomes

λ2 − Qλ − N P = 0. (3.6)

From the proof of Lemma 3.1, as long as E+
1 exits, it must be by∗2

1 + aby∗
1 − a < 0,

thus, N > 0, N P < 0; as long as E+
21 exits, it must be by∗2

21 + aby∗
21 − a < 0,

thus, N > 0, N P < 0; as long as E+
22 exits, it must be by∗2

22 + aby∗
22 − a > 0,

thus, N < 0, N P > 0; as long as E+
3 exits, it must be by∗2

3 + aby∗
3 − a = 0, thus,

N = 0, N P = 0. Hence, from Routh-Hurwitz theory, we have that if Q < 0, then E+
1

and E+
21 are locally asymptotically stable; if Q > 0, then E+

1 and E+
21 are unstable; if

Q = 0, then E+
1 and E+

21 are nonhyperbolic equilibria; E+
22 is unstable; E+

3 is a critical
case.

Suppose λ = iω (ω > 0) is a root of (3.2) for some τ . We have that

Q + ω2 + ω sin ωτ + (N P − Q) sin ωτ = 0,

(1 − Q)ω − ω cos ωτ + (N P − Q) cos ωτ = 0. (3.7)

Thus,

(ω2 + Q)2 + (1 − Q)2ω2 = ω2 + (N P − Q)2. (3.8)

Hence,

ω4 + Q2ω2 + Q2 − (N P − Q)2 = 0. (3.9)

Its roots are

ω2± = 1

2

{
−Q2 ±

√
Q4 − 4N P(2Q − N P)

}
(3.10)

(1) We consider the stability of E+
1 = (x∗

1 , y∗
1 ).

(i) If Q > 1
2 N P , there is only one positive root, λ = ω+, ω+ > 0, such that

ω2+ = 1

2

{
−Q2 +

√
Q4 − 4N P(2Q − N P)

}
,
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i.e. (3.2) has one imaginary solution, λ = iω+, ω+ > 0. From Eq. (3.7), we obtain
the following set of values of τ for which there are imaginary roots:

τn = θ

ω+
+ 2nπ

ω+
, (n = 0, 1, 2, . . .) (3.11)

where 0 ≤ θ < 2π , and

cos θ = (Q−1)ω2++(N P−Q)
(
Q+ω2+

)
ω2++(Q−N P)2 ,

sin θ = (1−Q)(Q−N P)ω+−ω+
(
Q+ω2+

)
ω2++(Q−N P)2 .

If Q < 0, when τ = 0, E+
1 is locally asymptotically stable. Hence, if τ < τ0,

(n = 0, i = 1), E+
1 is locally asymptotically stable.

Next, we prove λ = iω+ is simple. Denote

F(λ) = λ2 + (1 − Q)λ − Mλe−λτ − Q + (M Q − N P)e−λτ , (3.12)

We have that

d F(λ)

dλ
= 2λ + (1 − Q) − e−λτ + τλe−λτ − Q − τ(Q − N P)e−λτ . (3.13)

If λ(τ0) = iω+ is not simple, then d F
dλ

|λ=iω+ = 0, F(iω+) = 0. Therefore,

{
τλ2 + [(1 − Q)τ + 2]λ + 1 − 2Q − Qτ − e−λτ

}
|λ=iω+ = 0 (3.14)

We have

−τω2+ + 1 − 2Q − Qτ − cos ω+τ = 0,

((1 − Q)τ + 2)ω+ + sin ω+τ = 0. (3.15)

From the second equation of (3.15), we have

(1 − Q)τω+ + 2ω+ + sin ω+τ > 2ω+ + ω+ + sin ω+τ > 0,

which is a contradiction. Therefore λ = iω+ is simple.
Furthermore, we need to determine the sign of the derivative of Reλ(τ) at λ = iω+.

For convenience, we study (dλ/dτ)−1 instead of dλ/dτ . We have

(
dλ

dτ

)−1

= (2λ + 1 − Q)eλτ − 1

λ(−λ + Q − N P)
− τ

λ
,

and

eλτ = λ + N P − Q

λ2 + (1 − Q)λ − Q
.
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Therefore,

sign
{

d(Reλ)
dτ

}
λ=iω+

= sign
{

Re
( dλ

dτ

)−1
}

λ=iω+

= sign

{
Re

[ −(2λ+1−Q)

λ(λ2+(1−Q)λ−Q)

]
λ=iω+

+Re
[

1
λ(λ+N P−Q)

]
λ=iω+

}

= sign

{
(1−Q)2+2

(
Q+ω2+

)
(
Q+ω2+

)2+(1−Q)2ω2+
− 1

(N P−Q)2+ω2+

}

= sign
{
(1 − Q)2 + 2Q − 1 + 2ω2+

}
= sign

{
Q2 + 2ω2+

}
> 0.

Hence, there is a Hopf bifurcation at ω = ω+, τ = τ0. Therefore, if Q < 0, Q >
1
2 N P , then E+

1 is locally asymptotically stable for τ < τ0, E+
1 is unstable for τ > τ0,

there is a periodic solution around E+
1 for τ = τ0. If Q > 0, when τ = 0, E+

1 is
unstable. Hence, if Q > 0, then, E+

1 is unstable for any τ ≥ 0.

(ii) If Q ≤ 1
2 N P , then (3.9) has no positive root, i.e. (3.2) does not have imaginary

solution. Therefore, if Q ≤ 1
2 N P , then E+

1 is locally asymptotically stable for
any τ ≥ 0.

(2) We consider the stability of E+
21 = (x∗

21, y∗
21).

Using the same method as the proof of E+
1 , if Q ≤ 1

2 N P , then E+
21 is locally

asymptotically stable for any τ ≥ 0; if Q < 0, Q > 1
2 N P , then E+

21 is locally
asymptotically stable for τ < τ̄0, E+

21 is unstable for τ > τ̄0, there is a periodic
solution around E+

21 for τ = τ̄0; where τ̄0 = θ
ω+ , (i = 21). If Q > 0, then, E+

1 is
unstable for any τ ≥ 0.

(3) We consider the stability of E+
22 = (x∗

22, y∗
22).

(i) If Q > 1
2 N P , there is only one positive root. From the proof of E+

1 ,
d Re(λ(τ ))

dτ
|λ=iω+ > 0. Hence, E+

22 is unstable for any τ ≥ 0.
(ii) If Q ≤ 1

2 N P , then (3.9) has no positive root, i.e. (3.2) does not have imaginary
solution. When τ = 0, E+

22 is unstable. Therefore, if Q ≤ 1
2 N P , then E+

22 is
unstable for any τ ≥ 0.

Therefore, E+
22 is unstable for any τ ≥ 0.

(4) We consider the stability of E+
3 = (x∗

3 , y∗
3 ).

Consider the characteristic equation (3.2). λ(τ) = 0 is a root of (3.2) for all τ ≥ 0.
Assume λ = u + iv is a root of (3.2), then, we have

u2 − v2 + 2iuv + (1 − Q)u + i(1 − Q)v − (u + iv)e−uτ (cosvτ − isinvτ) − Q

+Qe−uτ (cosvτ − isinvτ) = 0.

Therefore,

u2 − v2 + (1 − Q)u − Q + (−u + Q)e−uτ cosvτ − ve−uτ sinvτ = 0 (3.16)

2uv + (1 − Q)v − ve−uτ cosvτ + (u − Q)e−uτ sinvτ = 0 (3.17)
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From (3.12) and (3.13), we have

[u2−v2+(1 − Q)u − Q]2+[2uv+(1 − Q)v]2 = e−2uτ [(u − Q)2+v2] (3.18)

(i) Assume Q ≤ 0. Suppose (3.2) has a root λ = u + iv, u > 0, for some τ ≥ 0.
Then, from (3.14), we have

(u2 − v2)2 + 4u2v2 + 2(1 − Q)(u3+uv2)+(Q2 − 2Q)u2+Q2v2+2Q2u < 0.

This is impossible, since we are assuming Q ≤ 0 and u > 0. Hence, all roots
of (3.2) have non-positive real parts; this implies that the trivial solutions of the
linearized system of (1.4) about E+

3 is stable.
(ii) Assume Q > 0. Consider the following real function

f (λ, τ ) = λ2 + (1 − Q)λ − λe−λτ − Q + Qe−λτ .

We observe

f (0, τ ) = 0

and

lim
λ→+∞ f (λ, τ ) = +∞.

There exists a M > 0 such that, if λ ≥ M , f (λ, τ ) ≥ 0, we also have

∂ f (λ, τ )

∂τ
= 2λ + (1 − Q) + (−1 + τλ − Qτ)e−λτ ,

∂ f (0, τ )

∂λ
= −Q(1 + τ) < 0, (τ ≥ 0).

Hence, there exists a δ(τ ) > 0 such that when 0 < λ ≤ δ(τ ), f (λ, τ ) < 0.
Therefore , there must exist at least a λ̄, δ(τ ) < λ̄ ≤ M , such that f (λ̄, τ ) = 0,
i.e. (3.2) has at least a positive root. Hence, the trivial solution of the linearized
system of (1.4) about E+

3 is unstable.

4 Global asymptotic stability analysis of E0

In Sect. 3, we have considered local asymptotical stability of E0 in details. In the
section, we shall further consider global asymptotical stability of E0 by means of
Liapunov–LaSalle invariance principle. The following theorem is main result in the
section.

Theorem 4.1 If the case (1) of Theorem (3.1) holds, then, for any time delay τ , the
washout equilibrium E0 is globally asymptotically stable for me−b < a + 1, and
globally attractive for me−b = a + 1.
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Proof We shall also use Liapunov–LaSalle invariance principle (see, for example,
[35] and [37]) to prove Theorem 4.1 Define the subset

G = {ϕ = (ϕ1, ϕ2) ∈ C | ϕ1 ≥ 0, ν ≤ ϕ2 ≤ 1}.

We first show that G is positively invariant with respect to (1.4).
For any ϕ = (ϕ1, ϕ2) ∈ G, let (x(t), y(t)) be the solution of (1.3) with the initial

function ϕ. From the proof of Theorem 2.1 it has that (x(t), y(t)) is non-negative for
any t ≥ 0. We further show that y(t) ≤ 1 for any t ≥ 0. In fact, if there is a t3 > 0
such that y(t3) > 1, it has from Lagrange mean value theorem that ẏ(t4) > 0 for
some t4 ∈ (0, t3) and y(t4) = 1. Hence, it has from the second equation of (1.3) that

ẏ(t4) = 1 − y(t4) − mx(t4)y(t4)

(a + y(t4))(A + Cy(t4))
e−by(t4) < 0,

which is a contradiction to ẏ(t4) > 0.
Let us show that y(t) ≥ ν for all t ≥ 0. If not, we can find some t5 ≥ 0 such that

y(t5) = ν, y(t) ≥ ν for all −τ ≤ t ≤ t5 and ẏ(t5) ≤ 0. On the other hand, it follows
from (1.4) that

ẏ(t5) = 1 − y(t5) − my(t5)x(t5)
(a+y(t5))(A+Cy(t5))

e−by(t5) > 1 − ν − qm
a A ν = 0.

Thus, we again have a contradiction. Therefore, G is positively invariant with respect
to (1.4).

Let us define a functional V on G as follows,

V (ϕ) = ϕ1(0) +
0∫

−τ

ϕ1(θ)dθ. (4.1)

It is clear that V (ϕ) is continuous on the subset G and that the derivative of V (ϕ)

along the solution of (1.4) satisfies

V̇ (ϕ)|(1.4) = ϕ̇1(0) + ϕ1(0) − ϕ1(−τ)

= ẋ(t) + x(t) − x(t − τ)

= my(t − τ)

a + y(t − τ)
e−by(t−τ)x(t − τ) − x(t) + x(t) − x(t − τ)

= my(t − τ)

a + y(t − τ)
e−by(t−τ)x(t − τ) − x(t − τ)

= f (y(t − τ))

a + y(t − τ)
x(t − τ)

= f (ϕ2(−τ))

a + ϕ2(−τ)
ϕ1(−τ), (4.2)
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for t ≥ 0, where

f (y) = mye−by − a − y.

Since (1.4) has unique equilibrium E0, it has that f (y) ≤ 0 for any y ∈ [0, 1]. Hence,
it has that for any t ≥ 0,

V̇ (ϕ)|(1.4) ≤ 0.

This shows that V (ϕ) is a Lyapunov functional of (1.4) on the subset G.
Define E = {ϕ ∈ G | V̇ (ϕ)|(1.4) = 0}. From (4.2), it has that

E = {ϕ ∈ G | ϕ1(−τ) = 0 or f (ϕ2(−τ)) = 0}. (4.3)

Let M be the largest set in E which is invariant with respect to (1.4). Clearly, M is not
empty since E0 = (0, 1) ∈ M . We have two cases to be discussed.

(1) If me−b < a + 1, it has that f (y) < 0 for any y ∈ [0, 1]. Hence,

E = {ϕ ∈ G | ϕ1(−τ) = 0}.

For any ϕ ∈ M , let (x(t), y(t)) be the solution of (1.4) with the initial function
ϕ. From the invariance of M , it has that (xt , yt ) ∈ M ⊂ E for any t ∈ R. Thus,
x(t − τ) = 0 for any t ∈ R, which implies that x(t) ≡ 0 and ϕ1 ≡ 0 for any
t ∈ R. From the second equation of system (1.4), it has that ẏ(t) = 1 − y(t) for
any t ∈ R. Since y(t) → 1 as t → +∞. Hence, ϕ2 ≡ 1. Therefore,

M = {(0, 1)} = {E0}.

The classical Liapunov–LaSalle invariance principle (see, for example, [35]) shows
that E0 is globally attractive for any τ ≥ 0. It follows from Theorem 3.1 that the
washout equilibrium E0 of (1.4) is globally asymptotically stable for any time
delay τ ≥ 0.

(2) If me−b = a + 1, it has that f (y) = 0 is equivalent to y = 1. Hence, while
f (ϕ2(−τ)) = 0, it must have that ϕ2(−τ) = 1. Thus,

E = {ϕ ∈ G | ϕ1(−τ) = 0 or ϕ2(−τ)) = 1}.

For any ϕ ∈ M , let (x(t), y(t)) be the solution of (1.4) with the initial function ϕ.
From the invariance of M , it has that (xt , yt ) ∈ M ⊂ E for any t ∈ R. Thus for
any t ∈ R, it has that x(t − τ) = 0 or y(t − τ) = 1. If y(t − τ) = 1 for some
t ∈ R, it has from the invariance of G that the function y(t) takes local maximum
at t − τ . Hence, it must have that ẏ(t − τ) = 0. From the second equation of
system (1.4), it has that

ẏ(t − τ) = 1 − y(t − τ) − mx(t − τ)y(t − τ)

(a + y(t − τ))(A + Cy(t − τ))
e−by(t−τ) = 0.
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Since y(t − τ) = 1, we have that x(t − τ) = 0. Therefore, for any ϕ = (ϕ1, ϕ2) ∈
E , it always has that x(t −τ) = 0 for any t ∈ R, i.e., ϕ1(−τ) = 0. By repeating the
proof of case (1), it also has that M = {E0}. It again follows from the Liapuynov–
LaSalle invariance principle that E0 is globally attractive for any τ ≥ 0. This
completes the proof of Theorem 4.1.

5 Permanence

In this section, we will use the same method as [38] to prove the permanence of system
(1.4). The following theorem is main result in the section.

Theorem 5.1 For any time delay τ ≥ 0, m > 1 and me−b > a + 1 are necessary
and sufficient for the permanence of (1.4).

Proof Note that the washout equilibrium E0 is globally asymptotically stable or glob-
ally attractive if m > 1 and me−b > a + 1 are not valid. We only need to prove the
sufficiency. It follows from the definition of permanence and Theorem 2.1, we only
need to show

lim inf t→∞ x(t) ≥ υ. (5.1)

Here υ is some positive constant which does not depend on the initial function ϕ. The
proof is divided into two steps.

Step 1. Let us first show

lim inf t→∞ x(t) > 0. (5.2)

From the invariance of G, it is enough to consider the solution (x(t), y(t)) (t ≥ 0)

with the initial function ϕ ∈ G. From Theorems 2.1 and 4.1, we see that the omega
limit set ω(ϕ) of (x(t), y(t)) (t ≥ 0) is nonempty, compact, invariant and ω(ϕ) ⊂ G.

If lim inf t→+∞ x(t) = 0, we shall show that there is a contradiction.
In fact, from lim inf t→+∞ x(t) = 0, we see that there exists a positive time sequence

{tn} : tn → +∞(n → +∞) such that

lim
tn→+∞ x(tn) = 0, ẋ(tn) ≤ 0, x(t) ≥ x(tn) (tn − τ ≤ t ≤ tn).

Note that the solution (x(t), y(t)) is bounded on [0,+∞) by Theorem 2.1. It follows
from (1.4) that is (x(t), y(t)) uniformly continuous on [0,+∞). Hence, it follows
from Ascoli’s theorem that there is a subsequence of {tn}, still denoted by {tn}, such
that

lim
tn→+∞(x(tn), y(tn)) = (x̃(t), ỹ(t))

holds uniformly on R in the wider sense. From Theorem 4.1, we have that (x̃t , ỹt ) ∈ G
for any t ∈ R, and that for any τ ∈ R, the function (x̃(t + τ), ỹ(t + τ)) of t is the
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solution of (1.4) with the initial function (x̃τ , ỹτ ). Here we note that x̃(0) = 0 and
ν ≤ ỹ(t) ≤ 1 for any t ∈ R.

We claim that (x̃(t), ỹ(t)) = (0, 1) for any t ∈ R. Note that if ϕ1(0) > 0, then
the solution (x(t), y(t)) of (1.4) exists and x(t) > 0 and y(t) > 0 (t ≥ 0). Thus,
from x̃(0) = 0, we have that x̃(t) = 0 for any t < 0. Thus, it follows from (1.4) that
x(t) ≡ 0 for any t ∈ R, and that ỹ′(t) = 1 − ỹ(t) for any t ≥ τ . Hence,

ỹ(t) = ỹ(0)e−t + (1 − e−t ), (t ≥ τ).

Note that from the arbitrariness of τ , we have that

ỹ(t) = 1 + (ỹ(0) − 1)e−t .

Since ỹ(t) is bounded for t ∈ R, we must have that ỹ(0) = 1, which implies that
ỹ(t) = 1 for any t ∈ R. It follows from (1.4) and the invariance of G that (x̃(t), ỹ(t)) =
(0, 1) for any t ∈ R. This shows that the above claim holds. Specially, we have that

lim
n→+∞ x(tn − τ) = x̃(−τ) = 0, lim

n→+∞ y(tn − τ) = ỹ(−τ) = 1,

lim
n→+∞

my(tn − τ)

a + y(tn − τ)
e−by(tn−τ) = me−b

a + 1
> 1.

For sufficiently small ε > 0 and sufficiently large N , n > N , we have

my(tn − τ)

a + y(tn − τ)
e−by(tn−τ) >

me−b

a + 1
− ε > 1.

Hence

ẋ(tn) = my(tn − τ)

a + y(tn − τ)
e−by(tn−τ)x(tn − τ) − x(tn)

≥
(

my(tn − τ)

a + y(tn − τ)
e−by(tn−τ) − 1

)
x(tn)

>

(
me−b

a + 1
− ε − 1

)
x(tn) > 0.

which is a contradiction to ẋ(tn) ≤ 0. This completes the proof of lim inf t→∞
x(t) > 0.

Step 2. Let us show that

lim inf t→∞ x(t) ≥ υ > 0.

For any initial functions sequence ϕn = {(ϕ(n)
1 , ϕ

(n)
2 )} ⊂ G, let (x (n)(t), y(n)(t)) be

the solution of (1.4) with the initial function ϕn . Let ωn(ϕn) be the omega limit set of
(x (n)(t), y(n)(t)). We have that there exits some compact and invariant set ω∗ ⊂ G such
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that dist (ωn(ϕn), ω∗) → 0 as n → +∞. Here, dist (ωn(ϕn), ω
∗) means Hausdor f f

distance.

If (5.1) does not hold, for some initial function sequence ϕn = {(ϕ(n)
1 , ϕ

(n)
2 )} ⊂ G

such that ϕ
(n)
1 (0) > 0, we have that there is some ϕ̄ = (ϕ̄1, ϕ̄2) ∈ ω∗ such that

ϕ̄1(θ0) = 0 for some θ0 ∈ [−τ, 0]. Now, let (x̄(t), ȳ(t)) be the solution of (1.4) with
the initial function ϕ̄. Then, by the invariance of ω∗, we have that (x̄t , ȳt ) ∈ ω∗ for
all t ∈ R. Note ϕ̄1(θ0) = 0 and the positivity of all solutions, we easily have that
x̄(t) = 0 for all t ≤ θ0. Hence, it follows from (1.4) that ϕ̄1(θ) = 0(−τ ≤ θ ≤ 0)

and x̄(t) = 0(t ∈ R). This implies that x̄(t) = 0, ȳ(t) = ḡ(t) for all t ∈ R,
where ḡ(t) = 1 − (1 − ϕ̄2(0))e−t . If ϕ̄2(0) < 1, we see that the negative semi-orbit
(x̄t , ȳt )(t ≤ 0) is unbounded. This is a contradiction.

If ϕ̄2(0) = 1, we have that x̄(t) = 0, ȳ(t) = 1 for all t ∈ R. This shows that
ϕ̄ = (0, 1) = E0 ∈ ω∗. Let us show that E0 is factually isolated [39,40]. That is, there
exists some neighborhood U of E0 in G such that E0 is the largest invariant set in U .
In fact, let us choose

U = {
ϕ | ϕ = (ϕ1, ϕ2) ∈ Ḡ, ‖ ϕ − E0 ‖< ε

}

for some sufficiently small positive constant ε and ε <
me−b−(a+1)

me−b−1
. We shall show

that E0 is the largest invariant set in U for some ε.
If not, for any sufficiently small ε there exists some invariant set W (W ⊂ U ) such

that W\E0 is not empty. Let ϕ = (ϕ1, ϕ2) ∈ W\E0 and (xt , yt ) be the solution of
(1.4) with the initial function ϕ. Then, (xt , yt ) ∈ W for all t ∈ R.

If ϕ1(0) = 0, by the invariance of W and Theorem 2.1, we also have the contradic-
tion that ϕ = E0 or that the negative semi-orbit (xt , yt )(t < 0) of (1.4) through ϕ is
unbounded.

If ϕ1(0) > 0, from the Theorem 2.1, we see that x(t) > 0 for all t ≥ 0. Now, let us
consider the continuous function

P(t) = x(t) + ρ

t∫
t−τ

x(θ)dθ, (5.3)

for some constant ρ > 1. Because of (xt , yt ) ∈ U (t ∈ R), we have 1 − ε ≤ y(t) ≤ 1,
(t ∈ R). The time derivative of P(t) along the solution (x(t), y(t)) satisfies

Ṗ(t) = ẋ(t) + ρ(x(t) − x(t − τ))

= (ρ − 1)x(t) +
(

my(t−τ)
a+y(t−τ)

e−by(t−τ) − ρ
)

x(t − τ)

≥ (ρ − 1)x(t) +
(

me−b(1−ε)
a+(1−ε)

− ρ
)

x(t − τ)

(5.4)

Since ε <
me−b−(a+1)

me−b−1
and me−b

a+1 > 1, we have that me−b(1−ε)
a+(1−ε)

> 1. We can choose

ρ > 1, such that 1 < ρ <
me−b(1−ε)

a+(1−ε)
. From (5.2), we have that x(t) ≥ η > 0 for some
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constant η and all large t ≥ t1 > 0. Hence, it follows from (5.4),

Ṗ(t) ≥ (ρ − 1)x(t) > 0. (5.5)

Thus, P(t) → +∞ as t → +∞. This contradicts Theorem 2.1, and shows that E0
is isolated.

We easily see that the semigroup defined by the solution of (1.4) satisfies the
conditions of Lemma 4.3 in [40] with M = E0. Thus, by Lemma 4.3 in [40] , we
have that there is some ξ = (ξ1, ξ2), such that ξ ∈ ω∗ ∩ (W s(E0)\E0). Here, W s(E0)

denotes the stable set of E0.
If ξ1(0) = 0, again by the invariance of M and Theorem 2.1, we also have the

contradiction that ξ = E0 or that the negative semi-orbit (x̂t , ŷt )(t < 0) of (1.4)
through ξ is unbounded.

If ξ1(0) > 0, from Theorem 2.1, we see that x̂(t) > 0, ŷ(t) > 0 for all t > 0. It
follows from ξ ∈ ω∗ ∩ (W s(E0)\E0) that limt→+∞ x̂(t) = 0, limt→+∞ ŷ(t) = 1,

which contradicts (5.2). This shows that (5.1) holds. Thus, (1.4) is permanent. This
proves our theorem.

6 Discussion

In this paper, based on some biological meanings, we introduce variable yield and time
delay to a class of chemostat model with inhibitory exponential substrate uptake which
was considered in [4], and get an improved chemostat model (1.3) with time delay,
which accounts for the natural phenomenon more reasonably. Then, by using compar-
ison principle for functional differential equations and traditional analysis technique
for transcendental equations [35], we give a detailed analysis on global existence and
boundedness of solutions of (1.4) and local asymptotic stability of the equilibria of
(1.4). Finally, based on Lyapunov–LaSalle principle for functional differential equa-
tions, we completely obtain global asymptotic stability and global attraction of the
washout equilibrium of (1.4). Our results show that time delay is factually harmless
for the local and global asymptotic stability of the washout equilibrium of (1.4), but
it is not always harmless for the stability of the positive equilibrium, that is to say,
because of the time delay the positive equilibrium becomes unstable (Theorem 3.2).
Based on some known techniques on limit sets of differential dynamical systems, we
show that, for any time delay, the chemostat model is permanent if and only if only
one positive equilibrium exits. Unfortunately, we cannot give a complete proof to the
global asymptotic stability of the positive equilibrium E+

1 . We shall leave the problems
as future work.
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